Total Number of Page : 01

MCA MCC204

2nd Semester Back Examination 2017-18 THEORY OF COMPUTATION BRANCH: MCA

Time: 3 Hours
Max Marks: 70
Q.CODE: C936

Answer Question No.1 which is compulsory and any five from the rest.

The figures in the right hand margin indicate marks.

Answer all parts of a question at a place.

		Answer an parts of a question at a place.	
Q1	a) b) c) d) e) f) g) h) i)	Answer the following questions: Design a DFA for L=φ. Explain the component of DFA. Write the formal definition of a PDA. What is the application of pumping lemma? Define Ambiguity in context-free grammar. Is the language accepted by NFA accepted by TM. Write two example of NP-Complete problem. Is every NFA has equivalent DFA? Define Turing Machine. Defineparse tree.	(2 x 10)
Q2		Construct the NFA for the RE (ab+b)*ab then to DFA.	(10)
Q3		Prove that L = {a ⁿ !n is a perfect square} not a regular language.	(10)
Q4		Convert the grammar {S→0S1 A,A→1A0 S E}to PDA	(10)
Q5		Construct a PDA to accept the language WW ^R .	(10)
Q6		Design a Turing Machine that compute addition.	(10)
Q7		Design a DFA to accept the language : L={w!w has both an even number of 0's}	(10)
Q8	a) b) c)	Answer any TWO: Recursive Language Post Correspondent Problem Context Free Grammer.	(5 x 2)