Reg	jistra	ation No :											
Total I	Num	ber of Pages	s : 02										MCA
		2 nd	Camaat	D	.lou/	Dool	- - -		-4: - "	- 204	7 40		MCA205
		2	Semeste	er Regi		Back EEN I		ımın	atior	1 201	17-18		
				В		CH:I	-						
						: 3 Hc		•					
				M	ax M	arks	: 100)					
						E : C							
Ans	wer	Question No	o.1, Ques	stion N			are o	com	puls	ory a	and ar	ny four	from the
		The		- 4l u!		est.			- al :	-4			
		ine	figures i Answei		_		_						
				•		. 9.			. u. p.				
Q1		nswer the fol	• •										(2 x 10)
а	٠.	ata center effi	ciency cai	n be me		•							
	l. ;;;	PUE . BTU			ii. iv.	PoE DCi							
h		_	ot a carbo	o fron o									
D))	hich one is no Biomass	ot a carbo	n nee e	nergy ii.	Nuc							
	iii				iv.								
С		rganization th		and red			_	ble b	atteri	es			
	i.	•			ii.	WEI	•						
	iii	. RBRC			iv.	EPE	AT						
d	l) P	yramid of bion	nass of gr	assland	is								
	i.				ii.	upri	ght						
	iii				iv.		of the						
е		ransfer of toxic		food er	nergy i								
	i.	biodiversity			ii.		nagni		on				
		. material red		1: - 4:		food	ı cnaı	ın					
f	٠.	/hich is a non-	ionizing ra	adiation	? ii.	aam	ma r	21/					
	I. İİİ	X-ray . radiowaves			iv.	•	ıma ray ıa ray	•					
a		he process of		ı electri		•	•		n ahs	ence	of air	is knowr	า
9	a	•	producing	y Cloon i	only inc	,,,,,	10 110	ioto i	ii abc	,01100	or an	io kilowi	•
	i.	landfill			ii.	gasi	fication	on					
	iii	. pyrolysis			iv.	Non	e of t	he a	bove				
h) V	Which one measure water quality and organic matter content in water?											
	i.				ii.	_							
	iii				iv.		f thes						
ij		/hich is a haza	irdous ma	terial ad				?					
	İ.	Gold			ii.								
		. Bronze	tion mass:	doc c = f	ÍV.		•	. 4	- ۱۰۰ م	.+c	. m. m t -	n 0: 10±= :-	
j.	<i>)</i> (\	/hich organiza	non provi	ues son	ware	nench	шагк	ιο ε	valua	ile cc	mpute	ı systen	I

ii. LEED

iv. EU

performance?
i. SPEC

iii. Grin Grid

QΖ		Answer the following questions:	(2 X 10)
	a)	Define IT ecosystem. What are the components of IT ecosystem?	
	b)	What are the factors that influence the cost of electricity and how?	
	c)	What are the green practices issued by EPA?	
	d)	Differentiate cogeneration and trigeneration with example.	
	e)	What is storage sprawling? What are the different ways to tackle storage sprawling?	
	f)	What is carbon offset and what are the different offsetting activities?	
	g)	How blade server improves green efficiency?	
	h)	Why many companies go for outsourcing their archiving infrastructure and disaster recovery infrastructure to a third party?	
	i)	What is ILM? What are the different stages of ILM model?	
	j)	What is server consolidation? What are the green benefits of server consolidation?	
Q3	a)	Define air pollution. Explain different air pollutants and air quality control in detail.	(8)
	b)	Explain different solid waste management techniques.	(7)
Q4	a)	Describe in detail different major areas of avoidable cost to build business case for green.	(8)
	b)	Describe different standards that cover green practices.	(7)
Q5	a)	Explain how data center efficiency can be maximized by choosing right location and consolidating physical infrastructure.	(8)
	b)	Explain how data deduplication and thin provisioning helps in building green storage system.	(7)
Q6	a)	Explain how digital document and choosing printer, paper& ink can create a less-paper office.	(8)
	b)	What is green gadget? How can you power gadgets intelligently?	(7)
Q7	a)	What are the green benefits of virtual Infrastructure? Describe different steps to build virtual infrastructure.	(10)
	b)	Explain different industrial waste water treatment method.	(5)
Q8	a)	What are the different ways to improve green network efficiency? How can we create green Internet?	(7)
	b)	Explain how green power technology in IT can increase energy efficiency.	(8)