Negi	ısıı au	ion ivo.											
Total Number of Pages: 01											MCA MCC103		
1 st Semester Back Examination 2017-18 DISCRETE MATHEMATICS BRANCH: MCA Time: 3 Hours Max Marks: 70 Q.CODE: B914 Answer Question No.1 which is compulsory and any five from the rest. The figures in the right hand margin indicate marks.													
Q1	a) b) c) d) e) f) g) h) i)	 b) What do you mean by symmetric closure? c) What do you mean by inference rule? d) Define equivalence class. e) Define partial order relation. f) Define Euler& Hamiltonians graph. g) What do you mean by Preorder & postorder traversal? h) Define group code. i) If a tree has n vertices, how many edges it has? 								(2 x 10)			
Q2 Q3		Shaw that $2^n > n^3$, $n > = 10$ by Mathematical Induction. Find the transitive closure of relation R={(a,b),(b,a),(b,c),(c,d),(b,b)}							(10) (10)				
Q4		Solve the recurrence relations $a_n=4a_n+5a_n$, $a_1=2$, $a_2=6$							(10)				
Q5		Describe kruskal Algorithms for minimal spanning tree .								(10)			
Q6		Describe the single source shortest path by Dijkstra Algorithms. Give example.									(10)		
Q7		Let L be a lattice. Then for any a, b ε L,show that; (i) a•(a•b)=a (ii)a•(a•b)=a									(10)		
Q8	a) b) c)	b) Hasse diagram.							(5 x 2)				