\square

$1^{\text {st }}$ Semester Regular/Back Examination 2017-18 STATISTICS AND DECISION SCIENCE BRANCH : MBA
 Time: 3 Hours
 Max Marks: 100
 Q.CODE: B1160

Answer Question No. 1 and 2 which are compulsory and any four from the rest.
The figures in the right hand margin indicate marks.

Q1 Answer the following questions:

a) The quartiles of a normal distribution are 47.3 and 52.7 respectively, then mean deviation about mode is \qquad and range is \qquad _.
b) The mean and S.D. of a normal distribution are 10 and 6, the point of inflexion is _ and coefficient of kurtosis is \qquad .
c) If $r=0.6$, then coefficient of non-determination is \qquad and if $r= \pm 1$ then two regression line are \qquad to each other.
d) Two variates x and y are given by $y=2-3 x$, if variance of x is 9 , then variance of y is
\qquad and is a unitless measure of dispersion.
e) If each of the value x is divided by 2 and of y is multiplied by 2 , then coded value $b_{v u}$ is times of byx and if $m_{2}=4$ and $m_{3}=8$ the skewness is \qquad .
f) In a simplex method the pivot (or key element) can be \qquad sign and constraints involve equal sign require use of variables.
g) Planning military strategy is an application of \qquad and prediction of electoral behaviour in election is made by \qquad analysis.
h) If in a game the payment are made from and among the players only then the game is called
\qquad and assignment problem is a particular case of \qquad .
i) If $\lambda=10$ customers per hour and $\mu=15$ customers per hour then the traffic intensity is and expected number of customers in queue is \qquad .
j) If anevent B has occurred and it is known that $P(B)=1$, then conditional probability $P(A / B)$ is
\qquad and for a binominal distrution if $n=6$ and $P(3): P(4)=8: 3$, then value of p is
\qquad .

Q2 Answer the following questions:
a) If $\mathrm{n}=10, \Sigma x_{i}=110, \Sigma\left(x_{i}-5\right)^{2}=1000$, then find S.D of x .
b) If S.D of ' n ' natural numbers is 2 , then find value of ' n '.
c) What is Probability that two persons borne on the same day. (Ignoring date).
d) A coin and a dice are thrown. What is probability of getting a head or an even number?
e) The sum of 25 observations is 400 and the sum of squares of observations is 8900 , find coefficient of variability.
f) A speaks truth is 75% and B is 80% of the cases are they likely to contradict each other narrating the same incident.
g) The regression coefficient of x on y is 0.6 , write down the regression coefficient of u and v, where $u+3 x=10$ and $2 y+5 v=25$.
h) If $\lambda=20$ customers per hour and $\mu=25$ customers per hour then find expected waiting time in system and in queue.
i) If $Q_{1}=26, Q_{3}=76$ and coefficient of Skewness=0.2, find median.
j) A pair of dice is thrown 3 times. If getting a doublet is considered as a success, find the probability of 3 successes.

Q3 Find optimal strategies for firm A, firm B and value of the game from the following pay-off matrix by using dominance rule.

Firm B
Firm A $\left(\begin{array}{llll}35 & 35 & 25 & 5 \\ 30 & 20 & 15 & 0 \\ 40 & 50 & 0 & 10 \\ 55 & 60 & 10 & 15\end{array}\right)$

Q4 Find B.F.S and T.C from the following T.P by NWCM and then test for optimality by 'MODI' method.
Warehouse

Plant	W1	W2	W3	W4	Supply
P1	6	2	6	12	120
P2	4	4	2	4	200
P3	13	8	7	2	80
Demand	50	80	90	180	

Q5 a) A Sample of 100 arrivals of customers to a departmental store is according to the following distribution:

Time between arrival (minutes)	1	1.5	2	2.5	3
Frequency	18	15	36	19	12

Simulate for next 10 time between arrivals and time of arrivals by using random numbers : 25,39,65,76,12,05,73,89,19,49.
b) Mean and S.D. of 100 observations are 40 and 5.1 respectively. By mistake, one observation is misprint as 50 against 40 , then find corrected mean and S.D.

Q6 a) The number of units of an item that are withdrawn from inventory on a day-to-day basis follows Markov process in which requirements for tomorrow depend on today's requirement. A one-day transition matrix is given below.
Numbers of units withdrawn from inventory.

Tomorrow

Today $\left(\begin{array}{ccc}5 & 10 & 12 \\ 50.6 & 0.4 & 0 \\ 100.3 & 0.3 & 0.4 \\ 120.1 & 0.3 & 0.6\end{array}\right)$

Find two-day transition matrix by constructing probability tree diagrams.
b) A municipal corporation puts 10,000 light bulbs in the street. If lives of bulbs follow normal distribution with a mean of 60 days and a standard deviation of 20 days, then find how many bulbs will be replaced after 20 days?
(

Q7 a) Time taken in minutes by workers for different jobs are given in the matrix.

Workers	Jobs						1	2	3	4	5
	2	9	2	7	1						
	6	8	7	6	1						
	4	6	5	3	1						
	4	2	7	3	1						
	5	3	9	5	1						

Find optimal assignment schedule by HAM.
b) Two regression lines are given below.
$3 x+2 y=10$ and $6 x+y=15$,
Find Correlation Coefficient.

Q8 a) Prove that $-1 \leq r \leq 1$
($r=$ correlation coefficient)
b) Write short note ;
a) Maximin Criterion.
b) Minimax Criterion.

