Seventh Semester Examination – 2007 ADVANCED ELECTRONICS CIRCUITS

Full Marks - 70

Time: 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

- Answer the following questions: 2×10
 - (a) What is Voltage Controlled Oscillator?
 Give any two applications that require a
 VCO?
 - (b) What is an all-pass filter? Where and why it is needed?
 - (c) Which multivibrator is used for Digital operation?

- (d) Draw the circuit for self-biased transistor
 - (e) Define rise time and give its expression for cascaded compensated stages.
 - (f) Mention any four applications of Tunnel diode.
 - (g) What do you mean by Negative resistance? Briefly explain.
 - (h) Define Displacement error. Give an expression.
 - (i) Explain briefly about bootstrap sweep.
 - (j) Define slope. Give an expression.
- (a) Explain about all-pass filter and derive expression for phase shift.
- (b) For the all-pass filter determine the phase shift between the input and output at f = 2 KHz. To obtain a positive phase shift, what modifications are necessary in the circuit?

3. (a) Explain the principle of oscillator. Explain Wien bridge oscillator with a neat sketch.

5

- (b) Design the Wien bridge oscillator for a frequency of oscillations f₀ = 965Hz.
- (a) Explain about Fixed-bias transistor binary
 with a neat sketch.
- (b) Calculate the stable state currents and voltages for the Fixed-bias transistor binary consisting of two cross-coupled inverter circuits with parameter values: $V_{cc} = 12V, -V_{bb} = -12V, Rc = 2.2K,$ $R_1 = 15 K, R_2 = 100 K. Assume that the transistor have a minimum <math>h_{FE}$ value of 20.
- (a) Explain with a neat sketch the operation principle of Astable Emitter-coupled multi.
 - (b) For a practical Emitter-coupled multi $V_{cc}=30V$, $R_2=2R_1<< R^*$, C=0.1 micro F, $R_{cc}=0.2K$, $R^*=R^*=1K$, and $R_{e1}=R_{e2}=3.3K$.

Calculate (a) the voltage levels of the waveforms and (b) the frequency of oscillation. Assume silicon transistors with $h_{FE} = 30$.

- (a) Explain Principle and characteristics of UJT with a neat sketch.
 - (b) Explain in detail the application of UJT to generate sawtooth waveform, 4
- Explain with a neat sketch the operation of a
 Voltage-controlled negative resistance switching
 circuit for bistable, astable, and monostable
 operation with waveform.
- (a) Explain with neat sketches the IC555
 Timer Astable operation with waveforms.

7

(b) In a Astable Operation of IC555 Timer R_A=2.2K, R_B=3.9 K and C=0.1 microF. Determine the positive pulse width to, negative pulse width td, and free-running frequency f₀.