Total number of printed pages -8
 B. Tech
 CPEC 5302

Sixth Semester Examination - 2008
DIGITAL SIGNAL PROCESSING

Full Marks - 70

Time: 3 Hours

Answer either from Set-A or Set-B, but not from both.

SET - A

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin
indicate marks.

1. Answer the following questions : 2×10
(a) Find the response of the system if $\mathrm{a}=1$, $\mathrm{b}=-1, \mathrm{x}(\mathrm{n})=\delta(\mathrm{n})$ and the system is initially at rest.
P.T.O.

(b) Find out the Nyquist rate for the signal $x(t)=25 \operatorname{COS}(500 \pi t)$.
(c) What is the stability condition of an LTI system?
(d) At which band an ideal filter is distortionless?
(e) How the DFT and DTFT of one discrete time signal related?
(f) Find out the impulse response of the LTI system given by
$y(n)=k_{1} x(n)+k_{2} x(n-1)+k_{3} x(n-2)$.
(g) What are the advantages of FFT over DFT?
(h) Draw the signal flow graph of a first order digital filter.
(i) Show whether the systems are (i) Linear / Non linear, (ii) TV/TIV.

$$
\begin{aligned}
& y(n)=\sum_{k=-\infty}^{n} x(k) \\
& y(n)=x\left(n^{2}\right) .
\end{aligned}
$$

(j) What is the aliasing effect?
2. (a) Determine the impulse response for the given system described by difference equation.

6
$y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)$
(b) Compute and sketch the step response of the system.

4

$$
y(n)=\frac{1}{M} \sum_{k=0}^{N-1} x(n-k) .
$$

3. (a) Determine convolution of the following pairs of signal by means of $Z T$.
$x_{1}(n)=0.5^{n} u(n), x_{2}(n)=\operatorname{COS} \pi n u(n)$.
(b) Consider the Fir filter represented as $y(n)=x(n)+x(n-4)$. Compute and sketch the magnitude and phase spectrum. 4
4. (a) Let $x(n)$ be a real valued N point sequence. Develop a method to compute a N point DFT $x^{\prime}(k)$, which contains only the odd harmonics by using a real $\mathrm{N} / 2$ point DFT.

5
(b) Perform linear convolution of the following sequence by overlap add method.

5

$$
\begin{aligned}
& x(n)=\{1,-1,2,-2,3,-3,4,-4\} \\
& h(n)=\{-1,1\} .
\end{aligned}
$$

5. $x(n)=\delta(n)+2 \delta(n-2)+\delta(n-3)$
(i) Find the four point DFT of $x(n)$. 5
(ii) If $\mathrm{y}(\mathrm{n})$ is the four point circular convolution of $x(n)$ with itself, find $y(n)$ and four point DFT Y(k).

5
6. Design an FIR digital filter approximating the ideal low frequency response.

(i) Determine the coefficients of 25 tap filter based on window method with a rectangularwindow.
(ii) Plot the magnitude and phase response of the filter.
7. (a) With impulse invariance, a first order pole in $H_{a}(s)$ at $s=s_{k}$ is mapped to a pole in $H(Z)$ at $Z=e^{s_{k} T}$.

$$
\frac{1}{s-s_{k}} \Rightarrow \frac{1}{1-e^{s_{k} \top} z^{-1}}
$$

Determine how a second order pole is mapped with impulse invariance.

6
CPEC 5302
Contd.
(b) A second order continuous time filter has a system function

$$
H(s)=\frac{1}{s-a}+\frac{1}{s-b} .
$$

Where $\mathrm{a}<0$ and $\mathrm{b}<0$ are real. Determine the locations of poles of $H(Z)$ if the filter designed using impulse invariance technique with $\mathrm{T}=2 \mathrm{sec}$.

4
8. (a) Find the direct form II realization for the system described by difference equation.

6
$Y(n)=\frac{3}{4} y \mathbf{a}-1 \mathbf{f}-\frac{3}{4} y \mathbf{a}-2 \mathbf{f}_{+\times \boldsymbol{a}} \boldsymbol{a}-\frac{1}{3} \times \boldsymbol{Q}-1 \mathbf{f}$
(b) Explain the power spectrum estimation using the Bartlet method.

4

SET - B

Answer Question No. 1 which is compulsory and any five from the rest.
The figures in the right-hand margin indicate marks.

1. Answer the following questions : 2×10
(a) Find the response of the system if $\mathrm{a}=1$, $\mathrm{b}=-1, \mathrm{x}(\mathrm{n})=\delta(\mathrm{n})$ and the system is
initially at rest.

(b) Find out the Nyquist rate for the signal $x(t)=25 \operatorname{COS}(500 \pi t)$.
(c) What is the stability condition of an LTI system?
(d) At which band an ideal filter is distortionless?
(e) How the DFT and DTFT of one discrete time signal related?
(f) Find out the impulse response of the LTI system given by
$y(n)=k_{1} x(n)+k_{2} x(n-1)+k_{3} x(n-2)$.
(g) What are the advantages of FFT over DFT?
(h) Draw the signal flow graph of a first order digital filter.
(i) Show whether the systems are (i) Linear / Non linear, (ii) TV/TIV.

$$
\begin{aligned}
& y(n)=\sum_{k=-\infty}^{n} x(k) \\
& y(n)=x\left(n^{2}\right) .
\end{aligned}
$$

(j) What is the aliasing effect ?

CPEC 5302
Contd.
2. (a) Determine the impulse response for the given system described by difference equation.

6 $y(n)-4 y(n-1)+4 y(n-2)=x(n)-x(n-1)$
(b) Compute and sketch the step response of the system.

4

$$
y(n)=\frac{1}{M} \sum_{k=0}^{N-1} x(n-k) .
$$

3. (a) Find the direct form II realization for the system described by difference equation.

6

(b) Consider the Fir filter represented as $y(n)=x(n)+x(n-4)$. Compute and sketch the magnitude and phase spectrum.
4. (a) Let $x(n)$ be a real valued N point sequence. Develop a method to compute a N point DFT $x^{\prime}(k)$, which contains only the odd harmonics by using a real $\mathrm{N} / 2$ point DFT. 5
(b) Perform linear convolution of the following sequence by overlap add method.

5

$$
\begin{aligned}
& x(n)=\{1,-1,2,-2,3,-3,4,-4\} \\
& h(n)=\{-1,1\} .
\end{aligned}
$$

P.T.O.
satisfies the condition.

CPEC 5302
8

- C

