Total number of printed pages – 8 B. Tech CPEC 5302

Sixth Semester Examination – 2008

DIGITAL SIGNAL PROCESSING

Full Marks - 70

Time: 3 Hours

Answer either from Set-A or Set-B, but not from both.

SET - A

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

1. Answer the following questions: 2×10

(a) Find the response of the system if a = 1, b = -1, $x(n) = \delta(n)$ and the system is initially at rest.

P.T.O.

- (b) Find out the Nyquist rate for the signal $x(t) = 25 \text{ COS } (500 \text{ } \pi t).$
- (c) What is the stability condition of an LTI system?
- (d) At which band an ideal filter is distortionless?
- (e) How the DFT and DTFT of one discrete time signal related?
- (f) Find out the impulse response of the LTI system given by

$$y(n) = k_1 x(n) + k_2 x(n-1) + k_3 x(n-2).$$

- (g) What are the advantages of FFT over DFT?
- (h) Draw the signal flow graph of a first order digital filter.
- (i) Show whether the systems are (i) Linear / Non linear, (ii) TV/TIV.

$$y(n) = \sum_{k=-\infty}^{n} x(k)$$

$$y(n) = x(n^2).$$

(j) What is the aliasing effect?

CPEC 5302

2

Contd.

(a) Determine the impulse response for the given system described by difference equation.

$$y(n)-4y(n-1)+4y(n-2) = x(n)-x(n-1)$$

(b) Compute and sketch the step response of the system. 4

$$y(n) = \frac{1}{M} \sum_{k=0}^{N-1} x(n-k).$$

- 3. (a) Determine convolution of the following pairs of signal by means of ZT. 6 $x_4(n) = 0.5^n u(n), \ x_2(n) = COS \pi n u(n).$
 - (b) Consider the Fir filter represented as y(n) = x(n) + x(n-4). Compute and sketch the magnitude and phase spectrum.
- (a) Let x(n) be a real valued N point sequence.
 Develop a method to compute a N point DFT x'(k), which contains only the odd harmonics by using a real N/2 point DFT.
 - (b) Perform linear convolution of the following sequence by overlap add method. 5

$$x(n) = \{1, -1, 2, -2, 3, -3, 4, -4\}$$

 $h(n) = \{-1, 1\}.$

5.
$$x(n) = \delta(n) + 2\delta(n-2) + \delta(n-3)$$

- (i) Find the four point DFT of x(n). 5
- (ii) If y(n) is the four point circular convolution of x(n) with itself, find y(n) and four point DFT Y(k).
- 6. Design an FIR digital filter approximating the ideal low frequency response.

$$H_{d}(\varpi) = \begin{cases} \mathbf{I} & |\varpi| \le \frac{\pi}{6} \\ \mathbf{I}, & \frac{\pi}{6} \le |\varpi| \le \pi \end{cases}$$

- (i) Determine the coefficients of 25 tap filter based on window method with a rectangular window.5
- (ii) Plot the magnitude and phase response of the filter. 5
- 7. (a) With impulse invariance, a first order pole in $H_a(s)$ at $s = s_k$ is mapped to a pole in H(Z) at $Z = e^{s_k T}$.

$$\frac{1}{s - s_k} \Rightarrow \frac{1}{1 - e^{s_k T} z^{-1}}$$

Determine how a second order pole is mapped with impulse invariance. 6

(b) A second order continuous time filter has a system function

$$H(s) = \frac{1}{s-a} + \frac{1}{s-b}$$
.

Where a < 0 and b < 0 are real. Determine the locations of poles of H(Z) if the filter designed using impulse invariance technique with T = 2 sec.

8. (a) Find the direct form II realization for the system described by difference equation.

$$Y(n) = \frac{3}{4}ya - 1f - \frac{3}{4}ya - 2f + xaf - \frac{1}{3}xa - 1f$$

(b) Explain the power spectrum estimation using the Bartlet method.

SET - B

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

- 1. Answer the following questions: 2×10
 - (a) Find the response of the system if a = 1, b = -1, $x(n) = \delta(n)$ and the system is

initially at rest.

- (b) Find out the Nyquist rate for the signal $x(t) = 25 \text{ COS } (500 \text{ } \pi t).$
- (c) What is the stability condition of an LTI system?
- (d) At which band an ideal filter is distortionless?
- e) How the DFT and DTFT of one discrete time signal related?
- (f) Find out the impulse response of the LTI system given by

$$y(n) = k_1 x(n) + k_2 x(n-1) + k_3 x(n-2).$$

- (g) What are the advantages of FFT over DFT?
- (h) Draw the signal flow graph of a first order digital filter.
- (i) Show whether the systems are (i) Linear/ Non linear, (ii) TV/TIV.

$$y(n) = \sum_{k=-\infty}^{n} x(k)$$

$$y(n) = x(n^2).$$

(j) What is the aliasing effect?

- 2. (a) Determine the impulse response for the given system described by difference equation. 6 y(n)-4y(n-1)+4y(n-2)=x(n)-x(n-1)
 - (b) Compute and sketch the step response of the system. 4

$$y(n) = \frac{1}{M} \sum_{k=0}^{N-1} x(n-k).$$

3. (a) Find the direct form II realization for the system described by difference equation.

6

P.T.O.

$$Y(n) = \frac{3}{4}ya - 1f - \frac{3}{4}ya - 2f + xaf - \frac{1}{3}xa - 1f$$

- (b) Consider the Fir filter represented as y(n) = x(n) + x(n-4). Compute and sketch the magnitude and phase spectrum.
- (a) Let x(n) be a real valued N point sequence.
 Develop a method to compute a N point DFT x'(k), which contains only the odd harmonics by using a real N/2 point DFT.
 - (b) Perform linear convolution of the following sequence by overlap add method. 5

$$x(n) = \{1, -1, 2, -2, 3, -3, 4, -4\}$$

 $h(n) = \{-1, 1\}.$

5.
$$x(n) = \delta(n) + 2\delta(n-2) + \delta(n-3)$$

- i) Find the four point DFT of x(n). 5
- (ii) If y(n) is the four point circular convolution of x(n) with itself, find y(n) and four point DFT Y(k).
- Determine the mean and the autocorrelation of the sequence x(n), which is the output of a ARMA (1, 1) process described by difference equation x(n) = 0.5 x(n-1)+w(n)-w(n-1).
- 7. For zero mean, jointly Gaussian random variable X1, X2, X3, X4 it is known that $E(X1 \ X2 \ X3 \ X4) = E(X1 \ X2) \ E(X3 \ X4) + E(X1 \ X2) \ E(X3 \ X4) + E(X1 \ X4) \ E(X2 \ X3)$ use this result to derive the mean square value of $r'_{xx}(m)$ and the variance which is $Var[r'_{xx}(m)] = E[|r'_{xx}(m)|^2] E[[r'_{xx}(m)]|^2 \ 10$
- 8. Determine the coefficient {h(n)} of a linear phase FIR of length N = 15 which has a symmetric unit sample response and a frequency response that

$$H_r$$
 $\frac{2\pi k}{15}$ $k = 0, 1, 2, 3$ $k = 4, 5, 6, 7$

satisfies the condition.

10

7