Fifth Semester Examination - 2007

CONTROL SYSTEM ENGINEERING

Full Marks - 70

Time - 3 Hours

Answer Question No. 1 which is compulsory and any five from the rest.

The figures in the right-hand margin indicate marks.

Answer the following questions:

2×10

- (i) What is Mason's gain formula?
- (ii) What are the steady state error coefficients for different types of inputs ?

P.T.O.

- (iii) Briefly explain the stability of control system with reference to characteristics root locations.
- (iv) What are the type and order of a system?
- (v) With an example, explain how positive feedback can make a system unstable?
- (vi) What are the effects of proportional and integral control action ?
- (vii) What is a phase-lead compensator, and why is it used ?
- (viii) Briefly explain a method of tuning PID controllers.
- (ix) What is the aliasing effect and how can it be avoided?
- (x) Prove the final value theorem in Z-transform.
- (a) Explain the effects of negative feedback control.

 CPEF 5302

 5

Contd.

(b) Draw the signal flow graph, for the circuit shown below. Determine the overall transfer

function,
$$\frac{V_0(s)}{V_1(s)}$$
.

(a) Obtain the rise time, peak time, maximum overshoot, and settling time in the unit step response of a closed loop system given by

$$\frac{C(s)}{R(s)} = \frac{36}{s^2 + 2s + 36}$$

(b) Sketch the root locus of the system with open loop transfer function given by

$$G(s)H(s) = \frac{K(s+2)}{s^2+2s+3}$$

4. (a) Draw the Bode diagram for

$$G(s) = \frac{100(0.02s+1)}{(s+1)(0.1s+1)(0.01s+1)^2}$$

Determine the following from the Bode diagram.

- (i) Gain cross over frequency
- (ii) Phase cross over frequency
- (iii) Gain margin
- (iv) Phase margin.

Is the system stable?

- What are the Constant M-, and Constant
- N-circles?

0

Contd.

(a) Using Nyquist Criterion determine the stability of the system with

G(s) H(s) =
$$\frac{4s+1}{s^2(s+1)(2s+1)}$$
5

(b) The forward path transfer function of a unity feedback system is given by : 5

$$G(s) = \frac{K(s+1)}{s(s+2)(s+3)}$$

- (i) Determine the range of values of K, for the system to be stable.
- (ii) Determine the maximum value of K for which all the poles of the transfer function of the closed loop system are to the left of the line, σ = -0.5.
- below, field flux is constant. Back e.m.f.
 constant is K_b volts/rad/s. Torque constant
 is K N.m/A. For the motor and load
 combination, moment of inertia is J and
 viscous friction is F N.m/rad/s. Obtain the

state-space representation of the servo system with armature current and speed as state variables.

- If Z[x(t)] = X(z), obtain the Z-transform of the following functions:

 - (i) $a^k x(t)$ (ii) $e^{-at} x(t)$
 - (iii) t x(t) (iv) t
 - (v) k ak x(k).
- 7. (a) Obtain expressions for inverse Z-trans-

form of
$$X(z) = \frac{3z^2 + 2z + 1}{z^2 - 3z + 2}$$
.

(b) The input-output relationship of a sampled data system is described by the difference equation:

$$y(k+2)-3y(k+1)+2y(k)=r(k)$$

CPEE 5302

Contd.

where, r(0) = 1, and r(k) = 0 for $k \neq 0$, y(k) = 0 for $k \le 0$. Determine the pulse transfer function, and find the response. y (kT) of the system.

Write short notes:

10

- DC servo motor
- Amplidyne
- (c) Stepper motor.

- C