Registration No:

Total Number of Pages: 02
B.Tech

15BS1101

$1^{\text {st }}$ Semester Back Examination 2017-18 MATHEMATICS-I

BRANCH: AEIE, AERO, AUTO, BIOTECH, CHEM, CIVIL, CSE, ECE, EEE, EIE, ELECTRICAL, ETC, FAT, IEE, IT, MANUTECH, MECH, METTAMIN, MINERAL, MINING, MME, PE, PLASTIC, TEXTILE

Time: 3 Hours
Max Marks: 100
Q.CODE: B755

Answer Question No. 1 and 2 which are compulsory and any four from the rest. The figures in the right hand margin indicate marks.

Q1 Answer the following questions: multiple type or dash fill up type

a) The asymptote to the curve $x^{2} y+x y^{2}=0$ parallel to x-axis is
(a) $y=1$
(b) $y=0$
(c) $x=0$
(d) none?
b) Let $J_{n}(x)$ be the Bessel function then the value of $J_{n}(0)$ is \qquad
c) The degree of $\left(1+y^{\prime \prime}\right)^{\frac{3}{2}}=\left(x y^{\prime}+5\right)$ is
d) Let $\mathrm{A}=\left[a_{I J}\right]$ be a 3×3 matrix such that $a_{i j}=1$ for all I and j , then characteristics polynomial of A is \qquad
e) The eigenvalues of idempotent matrix are
f) If $\operatorname{Trace}(\mathrm{A})=3$ Then the value of the $\operatorname{Trace}\left(A^{T}\right)$ is
g) The Radius of curvature of the curve $\mathrm{y}=x^{3}+e^{2 x}$ at the point $(1,1)$ is
h) Let $p_{n}(x)$ be the Legendre polynomial then the value of $p_{n}(-1)$ is \qquad
i) The vector ($1,2,0$), ($1,1,1$),(2,2,2) and ($0,0,0$) are
(a)linearly independent
(b)linearly dependent
(c) both a and b
(d)none?
j) The integrating factor of $\mathrm{y}(1+\mathrm{xy}) d x+\mathrm{x}(1-\mathrm{xy}) d y$ is \qquad
Q2 Answer the following questions: Short answer type
a)

Find the Algebraic and Geometric multiplicity of $A=\left[\begin{array}{lll}2 & 2 & 2 \\ 2 & 2 & 2 \\ 2 & 2 & 2\end{array}\right]$ with respect to the eigenvalue 0 ?
b) Find the Radius of curvature for the pedal curve $p^{3}=2 \mathrm{ar}$
c) Find the Radius of convergence of $\sum_{1}^{\infty} \frac{n}{(n+1)!} x^{n}$?
d) Solve ($\left.x^{3} D^{3}-3 x^{2} D^{2}+6 x D-6\right) y=0$?
e) What is the integrating factor of $y^{\prime}+y=x y^{3}$?
f) Solve $\left(D^{4}+1\right) y=0$?
g) Solve the ordinary differential equation $\left(D^{2}+1\right)\left((D-5)^{3} y=0 ; D=\frac{d}{d x}\right.$
h) Find the asymptotes to the curve $2 x^{4} y+3 y^{4} x+x^{2} y+x y^{2}=0$ which are parallel to the axis?
i) Define rank of a matrix and what is the rank of a sum of the identity matrix and null matrix of order 3×3 ?
j) Let $\mathrm{A}=\left[a_{I J}\right]$ be a 3×3 matrix such that $\operatorname{det}(\mathrm{A}-\mathrm{I})=0$, Where I be a 3×3 identity matrix. If $\operatorname{Trace}(A)=13, \operatorname{det}(A)=36$ Then find the sum of the square of the eigenvalues?

Q3 a) Find all the asymptotes of the curve
$3 x^{3}+2 x^{2} y-7 x y^{2}+2 y^{3}-14 x y+7 y^{2}+4 x+5=0 ?$
b) Find the radius of curvature for the curve $\mathrm{a}=r(1+\cos \theta)$?

Q4 a) Prove that $J_{-o .5}(x)=\sqrt{\frac{2}{\pi x}} \cos x, j_{n}(x)$ be the Bessel's functions?
b) Evaluate the value of $\left(\frac{9}{2}\right)$?

Q5
a) Solve $\left(D^{2}+4\right) y=2 \tan x ; \mathrm{x}>0, \mathrm{D}=\frac{d}{d x}$?
b) Find the second linear independent solution of $y^{\prime \prime}-\frac{2}{x^{2}} y=0$

While one solution is x^{2} ?
Q6 a) Find the series solution of $y^{\prime \prime}-x y^{\prime}-2 y=0$ about $x=0$?
b) State and Prove the Rodrigue's formula ?

Q7 a) Show that $(\mathrm{n}+1) p_{n+1}(x)=(2 n+1) x p_{n}(x)-n p_{n-1}(x) ; \mathrm{n} \geq 1$?
b) Prove that $\int_{-1}^{1} p_{m}(x) p_{n}(x) d x=0$ if $\mathrm{m} \neq n$?

Q8 a)
Find eigenvalue and eigenvector of $A=\left[\begin{array}{llc}3 & 0 & 0 \\ 2 & 6 & 0 \\ 4 & 2 & 12\end{array}\right]$?
b) Prove that inverse of unitary matrix is unitary?

Q9 a) Solve $\left(2 x y^{4} e^{y}+2 x y^{3}+y\right) d x+\left(x^{2} y^{4} e^{y}-x^{2} y^{2}-3 x\right) d y=0$
b) Find the current at any time $t>0$ in a circuit having in series a constant electromotive force 40 v ,a resistor 10Ω and an inductor 0.2 H given that initial current is zero?

