Registration No :

\square
Total Number of Pages : 02
B.Arch.

AH213

$2^{\text {nd }}$ Semester Back Examination 2017-18
 MATHEMATICS- II
 BRANCH : B.Arch

Time: 3 Hours
Max Marks: 70
Q.CODE : C596

Answer Question No. 1 which is compulsory and any five from the rest.
The figures in the right hand margin indicate marks.
Answer all parts of a question at a place.
Q1 Answer the following questions:
a) The eigenvalues of idempotent matrix are \qquad .
b) What is the determinant value of odd order skew symmetric matrix?
c) Find the fundamental period of $\mathrm{f}(\mathrm{x})=\sin 2018 x$.
d) Let $\mathrm{A}=\left[a_{I}\right]$ be a 5×5 matrix such that rank of $\mathrm{A}=3$, then what is the number of linearly independent solutions of the homogeneous system of equations $A x$ $=0$.
e) If Trace $(\mathrm{A})=3$ Then what is the value of the $\operatorname{Trace}\left(3 A^{T}\right)$.
f) Find the value of $\int_{C} F(r) \cdot d r$, where $F=\left[e^{x},-e^{-y}, e^{z}\right]$ and $\mathrm{C}: r=\left[t, t^{2}, t\right]$ from $(0,0,0)$ to ($1,1,1$).
g) Let $f(x)$ be a even function of period 2π then in the fourier series what is the value of coefficient of $\sin n x$.
h) What is the parametric representation of equation of plane $x+y+z=1$?
i) Find the Directional derivative of the function $\mathrm{f}=x^{2}+y^{2}$ at a point $\mathrm{p}(1,1)$ in the direction $\vec{a}=2 \hat{\imath}-4 \hat{\jmath}$.
j) Find the Fourier sine series of the function $\mathrm{f}(\mathrm{x})=-k(-\pi<x<0)$; $\mathrm{f}(\mathrm{x})=k(0<x<\pi)$

Q2 a) Solve the system of linear equations $4 y+3 z=8,2 x-z=2$,
$3 x+2 y=5$ by Gauss elimination method.
b) Find the eigenvalues and eigenvector of the matrix

$$
A=\left[\begin{array}{lll}
2 & 2 & 2 \tag{5}\\
2 & 2 & 2 \\
2 & 2 & 2
\end{array}\right]
$$

Q3 a) Prove that Eigenvalues of Unitary matrix have absolute value one.
b) Prove that a square matrix of order three is the sum of Hermitian and Skewhermitianmatrix.

Q4 a) Find the Fourier series expansion of $f(x)=\left\{\begin{array}{lr}0 & \text { if }-2<x<0 \\ 2 & \text { if } \\ 2 & 0<x<2\end{array}\right.$ with period $\mathrm{P}=$ $2 \mathrm{~L}=4$.
b) Find the Fourier series expansion of $f(x)=\left\{\begin{array}{ll}x & \text { if }-\frac{\pi}{2}<x<0 \\ 0 & \text { if } \\ 0<x<\frac{\pi}{2}\end{array}\right.$ with period $\mathrm{P}=$ 2π.

Q5 a) Find the coordinates of the center of gravity of a mass of density
$\mathrm{f}(x, y)=1$ in the region $\mathrm{R}: x^{2}+y^{2} \leq 1$ in the first octant.
b) Evaluate the line integral $\oint_{C} F(r) \cdot d r$, Where
$F=[x, y, z], C: r=\left[t, t^{2}, t^{3}\right]$ from $(0,0) t o,(2,4,8)$
Q6 a) Using Green's Theorem find the value of line integral
$\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$, where ' C ' is the closed curve of the region bounded by the line $y=x$.
b) Find the area bounded by one arch of the cycloid
$\mathrm{x}=a(t-\sin t), y=a(1-\cos t) ; 0 \leq t \leq 2 \pi$
Q7 Verify Stokes Theorem, when $\mathrm{F}=y \hat{\imath}+(x-2 x z) \hat{\jmath}-x y \hat{k}$ and surface ' S ' is the part of the sphere $x^{2}+y^{2}+z^{2}=a^{2}$ above the xy plane.

Q8 Write short answer on any TWO:
a) Diagonalize the matrix $P=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
b) Discuss the solution of the following system of equations $7 x+16 y-7 z=4,2 x+5 y-3 z=-3$ and $x+y+2 z=4$
c) Find Fourier series of $f(x)=x(0<x<2 \pi)$
d) Evaluate the value of $\int_{C} F(r) \cdot d r$, where $F=\left[y^{2},-x^{2}\right]$ and C : Be the line segment from $(0,0)$ to $(2,4)$.

